
GadJet.jl
Release 0.1.0

Aug 23, 2020

Contents:

1 Installation 1

2 Quickstart 3
2.1 Reading Data . 3
2.2 Quick Visualisation . 3

3 Read Snapshot Data 5
3.1 Reading the header . 5
3.2 Reading a snapshot . 6
3.3 Large Simulations . 7

4 Read Subfind Data 9
4.1 Reading the header . 9
4.2 Reading the subfind files . 10

5 Write Data 11
5.1 Format 2 . 11
5.2 Format 1 . 11

6 Unit Conversion 13
6.1 Primitive unit type . 14

7 Riemann Solvers 15
7.1 Setup . 15
7.2 Solving the shock . 16
7.3 Utility . 17

8 SPH mapping 19
8.1 Internal Module . 19
8.2 External Programs . 20

9 Indices and tables 23

i

ii

CHAPTER 1

Installation

Installing is as easy as usually with Julia:

] add GadJet

If you want the latest version check out the Development branch

] add GadJet#Development

1

GadJet.jl, Release 0.1.0

2 Chapter 1. Installation

CHAPTER 2

Quickstart

2.1 Reading Data

If you want to read a simulation snapshot into memory with GadJet.jl, it’s as easy as this:

data = read_snap(filename)

This will return a dictionary with the header information in data["Header"] and the blocks sorted by particle
type.

As an example, this is how you would access the positions of the gas particles:

data["Parttype0"]["POS"]

If you only want to read a specific block for a single particle type, e.g. positions of gas particles you can use the
function with a specified blockname and particle type like so:

pos = read_snap(filename, "POS", 0)

This will return an array of the datatype of your simulation, usually Float32.

2.2 Quick Visualisation

For a quick glimpse at your data you can use the glimpse function (yes, I thought hard about this one. . .)

image = glimpse(filename)

This will return a 500x500 pixel image of the whole box, centered on the center of mass.

If you want to look at a specific range you can provide an array with the center coordinates as center_pos = [x,
y, z] and the extent in x, y and z direction with dx, dy, dz.

3

GadJet.jl, Release 0.1.0

image = glimpse(filename, center_pos, dx, dy, dz)

4 Chapter 2. Quickstart

CHAPTER 3

Read Snapshot Data

3.1 Reading the header

Reading the header block of the simulation can be done by using:

h = read_header(filename::String)

Where h is the returned header object:

mutable struct Header
npart::Vector{Int32} # an array of particle numbers per type in

→˓this snapshot
massarr::Vector{Float64} # an array of particle masses per type in

→˓this snapshot - if zero: MASS block present
time::Float64 # time / scale factor of the simulation
z::Float64 # redshift of the simulation
flag_sfr::Int32 # 1 if simulation was run with star formation,

→˓ else 0
flag_feedback::Int32 # 1 if simulation was run with stellar

→˓feedback, else 0
nall::Vector{UInt32} # total number of particles in the simulation
flag_cooling::Int32 # 1 if simulation was run with cooling, else 0
num_files::Int32 # number of snapshots over which the

→˓simulation is distributed
boxsize::Float64 # total size of the simulation box
omega_0::Float64 # Omega matter
omega_l::Float64 # Omega dark enery
h0::Float64 # little h
flag_stellarage::Int32 # 1 if simulation was run with stellar age,

→˓else 0
flag_metals::Int32 # 1 if simulation was run with metals, else 0
npartTotalHighWord::Vector{UInt32} # weird
flag_entropy_instead_u::Int32 # 1 if snapshot U field contains entropy

→˓instead of internal energy, else 0

(continues on next page)

5

GadJet.jl, Release 0.1.0

(continued from previous page)

flag_doubleprecision::Int32 # 1 if snapshot is in double precision, else 0
flag_ic_info::Int32
lpt_scalingfactor::Float32
fill::Vector{Int32} # the HEAD block needs to be filled with

→˓zeros to have a size of 256 bytes
end

This is equivalent to:

h = head_to_obj(filename::String)

If you want to read the header information into a dictionary you can use:

h = head_to_dict(filename::String)

3.2 Reading a snapshot

3.2.1 Full snapshot

If you want to read a simulation snapshot into memory with GadJet.jl, it’s as easy as this:

data = read_snap(filename)

This will return a dictionary with the header information in data["Header"] and the blocks sorted by particle
type.

As an example, this is how you would access the positions of the gas particles:

data["Parttype0"]["POS"]

3.2.2 Specific blocks

Reading specific blocks only works with Format 2 at the moment.

If you only want to read a specific block for a single particle type, e.g. positions of gas particles, you can use the
function with a specified blockname and particle type like so:

pos = read_snap(filename, "POS", 0)

This will return an array of the datatype of your simulation, usually Float32.

If the snapshot has no info block this will fail unfortunately.

You can still read the specific block by supplying a hand-constructed Info_Line object:

mutable struct Info_Line
block_name::String # name of the data block, e.g. "POS"
data_type::DataType # datatype of the block, e.g. Float32 for single

→˓precision, Float64 for double
n_dim::Int32 # number of dimensions of the block, usually 1 or

→˓3
is_present::Vector{Int32} # array of flags for which particle type this

→˓block is present,

(continues on next page)

6 Chapter 3. Read Snapshot Data

GadJet.jl, Release 0.1.0

(continued from previous page)

e.g. gas only: [1, 0, 0, 0, 0, 0]
e.g. gas + BHs: [1, 0, 0, 0, 0, 1]

end

and passing that to the function read_block_by_name:

pos = read_block_by_name(filename, "POS", info=pos_info, parttype=0)

where pos_info is a Info_Line object.

read_snap is used mainly as a wrapper function to call read_block_by_name, in case you were wondering
about the function name change.

I will collect some example Info_Line objects in a later release to be able to read some common blocks even
without a info block.

3.2.3 Getting snapshot infos

If you have a Format 2 snapshot and just want to know what blocks the snapshot contains you can use the function

print_blocks(filename)

to get an output of all block names.

If your simulation contains an INFO block you can read the info lines into Info_Line object like so:

info = read_info(filename, verbose=true)

This will return an Array of Info_Line objects. The optional keyword verbose additionally gives the same
functionality as print_blocks and prints the names to the console.

3.3 Large Simulations

For large simulations Gadget distributes snapshots over multiple files. These files contain particles associated with
specific Peano-Hilbert keys.

To get all particles within a subvolume of the simulation you can use the functions read_particles_in_box(.
..) or read_particles_in_volume(...).

read_particles_in_box(...) takes a box defined by a lower-left corner and an upper-right corner, constructs
the peano hilbert keys, selects the relevant files and reads the particles from these files into a dictionary.

function read_particles_in_box(filename::String, blocks::Vector{String},
corner_lowerleft,
corner_upperright;
parttype::Int=0,
verbose::Bool=true)

(...)

end

You can define an array of blocks you want to read, these will be read in parallel with simple multi-threading.

3.3. Large Simulations 7

GadJet.jl, Release 0.1.0

read_particles_in_volume(...) is a simple wrapper around read_particles_in_box(...), where
you can define a central position and a radius around it and it will construct the box containing that sphere for you and
read all particles in it.

function read_particles_in_volume(filename::String, blocks::Vector{String},
center_pos::Vector{AbstractFloat},
radius::AbstractFloat;
parttype::Int=0,
verbose::Bool=true)

(...)
end

In both functions parttype defines the particle type to be read, as in the previous read functions and verbose
gives console output.

3.3.1 Filename

With the snapshots being distributed over multiple filenames you need to be careful with that keyword. In this case
filename refers to the base-name. Assuming you want to read snapshot 140, which is in the snapshot directory 140 the
filename is

filename = "path/to/your/snapshot/directories/snapdir_140/snap_140"

GadJet will then automatically loop through the sub-snapshots which end in “.0”, “.1”, . . . , “.N”.

3.3.2 Example

If you want to, e.g. read positions, velocities, masses, density and hsml for all gas particles within the virial radius of
the most massive halo of a simulation you can do this as follows.

Assuming pos_halo is the position of the center of mass of the halo and r_vir is its virial radius you read the data
with

blocks = ["POS", "VEL", "MASS", "RHO", "HSML"]

data = read_particles_in_volume(filename, blocks, pos_halo, r_vir,
parttype=0,
verbose=true)

This will return a dictionary with the blocks as keys and containing the arrays for the particles.

data["POS"] # array of positions
data["RHO"] # array of densities
(...)

8 Chapter 3. Read Snapshot Data

CHAPTER 4

Read Subfind Data

4.1 Reading the header

Similarly to the normal snapshot you can read the header of the subfind output into a SubfindHeader object

struct SubfindHeader
nhalos::Int32 # number of halos in the output file
nsubhalos::Int32 # number of subhalos in the output file
nfof::Int32 # number of particles in the FoF
ngroups::Int32 # number of large groups in the output file
time::Float64 # time / scale factor of the simulation
z::Float64 # redshift of the simulation
tothalos::UInt32 # total number of halos over all output files
totsubhalos::UInt32 # total number of subhalos over all output

→˓files
totfof::UInt32 # total number of particles in the FoF
totgroups::UInt32 # total number of large groups over all

→˓output files
num_colors::Int32 # number of colors
boxsize::Float64 # total size of the simulation box
omega_0::Float64 # Omega matter
omega_l::Float64 # Omega dark enery
h0::Float64 # little h
flag_doubleprecision::Int32 # 1 if snapshot is in double precision, else 0
flag_ic_info::Int32

end

using

h = read_subfind_header(filename::String)

9

GadJet.jl, Release 0.1.0

4.2 Reading the subfind files

If you compiled Gadget with WRITE_SUB_IN_SNAP_FORMAT you can read the subfind output like you would a
normal snapshot, with any of the above methods. For convenience you can also use a helper function provided by
GadJet. Since each of the blocks is only relevant for either halos, subhalos, Fof or large groups you don’t need to
define a particly type, aka halo type in this case.

So in order to read the virial radius of the halos in a file you can simply use

R_vir = read_subfind(filename, "RVIR")

10 Chapter 4. Read Subfind Data

CHAPTER 5

Write Data

GadJet.jl can write snapshots that can be used as initial conditions.

5.1 Format 2

The safest way to write snapshots is in Format 2. Simply set up your header object and the arrays you want to write in
the correct data format. For the header this is the struct Header and for data its usually Array{Float32,2}. You
can then write an initial condition file by writing the header and the individual data blocks.

write_header(filename, header)
write_block(filename, pos, "POS")
write_block(filename, vel, "VEL")
write_block(filename, id, "ID")

Please note that you have to combine the arrays for individual particles in the correct order.

5.2 Format 1

Writing in format 1 works the same as above, but you need different function values. Also you need to make sure the
blocks are in the order gadget expects them to be!

write_header(filename, header, snap_format=1)
write_block(filename, pos, snap_format=1)
write_block(filename, vel, snap_format=1)
write_block(filename, id, snap_format=1)

11

GadJet.jl, Release 0.1.0

12 Chapter 5. Write Data

CHAPTER 6

Unit Conversion

GadJet.jl now uses Unitful.jl and UnitfulAstro.jl to store the unit conversion factors with actual units in place. You can
convert the internal units of Gadget into cgs units by defining the object GadgetPhysicalUnits:

GU = GadgetPhysicalUnits(l_unit::Float64=3.085678e21, m_unit::Float64=1.989e43, v_
→˓unit::Float64=1.e5;

a_scale::Float64=1.0, hpar::Float64=1.0,
𝛾_th::Float64=5.0/3.0, 𝛾_CR::Float64=4.0/3.0, xH::Float64=0.

→˓76)

where the keyword arguments are:

• a_scale::Float64 = 1.0: Cosmological scale factor of the simulation. Can be passed with the header
h as h.time.

• hpar::Float64 = 1.0: Hubble constant as ‘little h’. Can be passed with header h as h.h0.

• 𝛾_th::Float64 = 5.0/3.0: Adiabatic index of gas.

• 𝛾_CR::Float64 = 4.0/3.0: Adiabatic index of cosmic ray component.

• xH::Float64 = 0.76: Hydrogen fraction of the simulation, if run without chemical model.

This returns an object of type GadgetPhysicalUnits with the following properties:

struct GadgetPhysicalUnits

x_cgs::typeof(1.0u"cm") # position in cm
v_cgs::typeof(1.0u"cm/s") # velocity in cm/s
m_cgs::typeof(1.0u"g") # mass in g

t_s::typeof(1.0u"s") # time in sec
t_Myr::typeof(1.0u"Myr") # time in Myr

E_cgs::typeof(1.0u"erg") # energy in erg
E_eV::typeof(1.0u"eV") # energy in eV

(continues on next page)

13

GadJet.jl, Release 0.1.0

(continued from previous page)

B_cgs::typeof(1.0u"Gs") # magnetic field in Gauss

rho_cgs::typeof(1.0u"g/cm^3") # density in g/cm^3
rho_ncm3::typeof(1.0u"n_e") # density in N_p/cm^3

T_K::typeof(1.0u"K") # temperature in K

P_th_cgs::typeof(1.0u"Ba") # thermal pressure in Ba
P_CR_cgs::typeof(1.0u"Ba") # cosmic ray pressure in Ba

end

To convert, say positions of gas particles from a cosmological simulation to physical units you can use:

h = read_header(filename)

pos = read_snap(filename, "POS", 0)

GU = GadgetPhysicalUnits(a_scale=h.time, hpar=h.h0)

pos .*= GU.x_cgs

If you have different units than the standard Gadget ones you can call the object cunstructor with different values

GU = GadgetPhysicalUnits(your_l_unit, your_m_unit, your_v_unit; kwargs...)

Converting the units can then be done with Unitful.jl and UnitfulAstro.jl. So if you want to convert the position units
from the default cm to Mpc you can do this as:

using Unitful
using UnitfulAstro

pos = read_snap(filename, "POS", 0)
pos = @. pos * GU.x_cgs |> u"Mpc"

If you want to get rid of the units, for example if you need basic datatypes again for a function you can use the funtion
ustrip:

pos = ustrip(pos)

6.1 Primitive unit type

If you want to have the same functionality, but without using Unitful.jl you can construct a similar object:

GU = GadgetPhysical(l_unit::Float64=3.085678e21, m_unit::Float64=1.989e43, v_
→˓unit::Float64=1.e5;

a_scale::Float64=1.0, hpar::Float64=1.0,
𝛾_th::Float64=5.0/3.0, 𝛾_CR::Float64=4.0/3.0, xH::Float64=0.76)

This uses the same conversions, but leaves out the actual unit strings.

14 Chapter 6. Unit Conversion

CHAPTER 7

Riemann Solvers

GadJet.jl provides a number of exact riemann solvers. So far these are for

• Sod shock, pure hydro

• Sod shock, with CR acceleration

7.1 Setup

To get the exact solution to a Sod shock you first need to set up the inital conditions. You can do this with the helper
function RiemannParameters that contains all parameters for all possible configurations:

RiemannParameters(;rhol::Float64=1.0, rhor::Float64=0.125, # density left and
→˓right (L&R)

Pl::Float64=0.0, Pr::Float64=0.0, # pressure L&R
Ul::Float64=0.0, Ur::Float64=0.0, # internal energy L&R
P_cr_l::Float64=0.0, P_cr_r::Float64=0.0, # CR pressure L&R
E_cr_l::Float64=0.0, E_cr_r::Float64=0.0, # CR energy L&R
Bl::Array{Float64,1} = zeros(3), # B-field left
Br::Array{Float64,1} = zeros(3), # B-field right
Mach::Float64=0.0, # target Mach number
t::Float64, # time of the solution
x_contact::Float64=70.0, # position of the

→˓contact discontinuity along the tube
𝛾_th::Float64=5.0/3.0, # adiabatic index of

→˓the gas
𝛾_cr::Float64=4.0/3.0, # adiabatic index of

→˓CRs
Pe_ratio::Float64=0.01, # ratio of proton to

→˓electron energy in acceleration
thetaB::Float64=0.0, # angle between

→˓magnetic field and shock normal
theta_crit::Float64=(𝜋/4.0), # critical angle for

→˓B/Shock angle efficiency

(continues on next page)

15

GadJet.jl, Release 0.1.0

(continued from previous page)

dsa_model::Int64=-1, # diffuse shock
→˓acceleration model

xs_first_guess::Float64=4.7) # first guess of the
→˓resulting shock compression

To set up a standard Sod shock you need to supply it with pressure/energy values for left and right state, or with
pressure/energy values for the left state and a target Mach number.

A minimal working version would be, for a shock with Mach 10, at time = 1.5:

par = RiemannParameters(Ul=100.0, Mach=10.0, t=1.5)

This returns a parameter object for a pure hydro Sod shock:

mutable struct SodParameters

rhol::Float64 # denisty left
rhor::Float64 # density right
Pl::Float64 # pressure left
Pr::Float64 # pressure right
Ul::Float64 # internal energy left
Ur::Float64 # internal energy right
cl::Float64 # soundspeed left
cr::Float64 # soundspeed right
M::Float64 # Mach number
t::Float64 # time
x_contact::Float64 # position of the contact discontinuity along the tube
𝛾_th::Float64 # adiabatic index of the gas
𝛾_exp::Float64 # helper variable
𝜂2::Float64 # helper variable

end

A minimal working version for the solution of the CR shock discussed in Pfrommer+16 (doi:10.1093/mnras/stw2941)
would be:

par = RiemannParameters(Pl=63.499, Pr=0.1, t=1.5, dsa_model=4)

This also returns a parameter object: SodCRParameters_noCRs which can be found in
cr_sod_shock_noprepopulation.jl .

7.2 Solving the shock

To solve the shock with the given initial condition you just need to call

sol = solve(x, par)

with par being either of the above mentioned parameter objects, multiple dispatch will take care of the rest.

x has to be an array with either sample positions along the tube, or your actual particle positions, to make calculating
errors easier. You can also just pass it an array with a single position, if you’re only interested in that specific part of
the shock (e.g. x = [86.0] for the center of the postshock region.)

This will return a solution object depending on which shock you’re solving.

For the pure hydro case this is:

16 Chapter 7. Riemann Solvers

GadJet.jl, Release 0.1.0

mutable struct SodHydroSolution
x::Array{Float64,1} # array of given positions
rho::Array{Float64,1} # array of densities along the tube
rho4::Float64 # density in postshock region
rho3::Float64 # density between contact disc. and rarefaction wave
P::Array{Float64,1} # array of pressures along the tube
P34::Float64 # pressure between shock and rarefaction wave
U::Array{Float64,1} # array of internal energies along the tube
v::Array{Float64,1} # array of velocities along the tube
v34::Float64 # velocity between shock and rarefaction wave
vt::Float64 # velocity of rarefaction wave
vs::Float64 # shock velocity
Mach::Float64 # Mach number

end

7.3 Utility

A common issue is running into the error DomainError when solving a CR Sod shock. This is due to the definition of
the incomplete beta function. You can avoid this by supplying a value for xs_first_guess, which is a first guess
for the value of the shock compression ratio. In case you don’t know the target xs (which is the usual case) and are
tired of trying different values there’s a helper function for that:

function find_xs_first_guess(Ul::Float64, Mach::Float64;
xs_start::Float64=3.8, delta_xs::Float64=1.e-4,
eff_model::Int64=2, thetaB::Float64=0.0)

[...]
end

7.3. Utility 17

GadJet.jl, Release 0.1.0

18 Chapter 7. Riemann Solvers

CHAPTER 8

SPH mapping

8.1 Internal Module

You can map SPH data to a grid using the function:

function sphMapping(Pos, HSML, M, 𝜌, Bin_Quant;
param::mappingParameters,
kernel::SPHKernel,
show_progress::Bool=true,
conserve_quantities::Bool=false,

parallel::Bool=true,
dimensions::Int=2)

[...]

end

8.1.1 Setup

To map the data you need to define the mapping parameters via the mappingParameters object:

par = mappingParameters(xlim=[xmin, xmax], ylim=[ymin, ymax], zlim=[zmin, zmax],
Npixels=200)

Instead of Npixels you can also give the keyword argument pixelSideLength if you prefer to define your image
that way.

You also need to choose the kernel you used in the simulation. I implemented the following ones:

k = Cubic()
k = Quintic()
k = WendlandC4()
k = WendlandC6()

19

GadJet.jl, Release 0.1.0

8.1.2 Mapping

With the setup done you can now map (e.g.) density of your data using the function above as:

image = sphMapping(x, hsml, m, rho, rho, param=par, kernel=k)

Replacing the second rho with any other quantity would map that quantity of course. Please note: This function
doesn’t do any unit conversion for you, so you need to convert to the desired units beforehand. See the chapter on unit
conversion for usage.

Image now contains a 2D array with the binned data and can easily be plotted with imshow() from any plotting
package of your choosing.

Per default the keyword parallel = true causes the run to use multiple processors. For this you need to start
julia with julia -p <N> where <N> is the number of processors in your machine.

8.1.3 Conserved quantities

With the latest release you can map the particles to a grid while also conserv-
ing the particle volume, following the algorithm described in Dolag et. al. 2006
(https://ui.adsabs.harvard.edu/link_gateway/2005MNRAS.363. . . 29D/doi:10.1111/j.1365-2966.2005.09452.x).

This is switched off by default, but is slightly more expensive than simple mapping. If you don’t want to use it simply
call the mapping function with conserve_quantities=false.

CAUTION: This is currently broken and under development!

8.2 External Programs

GadJet.jl provides helper function for two external sph mapping Codes: Smac and P-Smac2.

8.2.1 P-Smac2

P-Smac2 by Julius Donnert (https://github.com/jdonnert/Smac2) is an advanced mapping code for a multitude of
different quantities. To run a mapping and plotting loop from a Julia script you need to update the parameter files on
the fly. The function write_smac2_par provides this functionality.

write_smac2_par(x, y, z,
euler_angle_0, euler_angle_1, euler_angle_2,
xy_size, z_depth, xy_pix::Int64,
input_file, output_file, path,
effect_module::Int64=0, effect_flag::Int64=0)

8.2.2 Smac

Smac is a SPH mapping Code by Klaus Dolag and others. The implementation is described in Dolag et al. 2005
(https://ui.adsabs.harvard.edu/link_gateway/2005MNRAS.363. . . 29D/doi:10.1111/j.1365-2966.2005.09452.x)

Smac isn’t public unfortunately. So these functions are mainly for my personal use. If you do have access to Smac,
here’s a reference to what you can do.

GadJet.jl provides some functions to read the binary output of Smac, as I personally prefer that over the FITS output.
To get the binary format you need to set FILE_FORMAT = 1 in the parameter file.

20 Chapter 8. SPH mapping

GadJet.jl, Release 0.1.0

Reading image information

If you set FILE_HEADER = 1 in the Smac parameter file you can read the information of the image header into a
Smac1ImageInfo object like so:

info = read_smac1_binary_info(filename)

The Smac1ImageInfo object contains the following information

struct Smac1ImageInfo

snap::Int32 # number of input snapshot
z::Float32 # redshift of snapshot
m_vir::Float32 # virial mass of halo
r_vir::Float32 # virial radius of halo
xcm::Float32 # x coordinate of image center
ycm::Float32 # y coordinate of image center
zcm::Float32 # z coordinate of image center
z_slice_kpc::Float32 # depth of the image in kpc
boxsize_kpc::Float32 # xy-size of the image in kpc
boxsize_pix::Float32 # xy-size of the image in pixels
pixsize_kpc::Float32 # size of one pixel in kpc
xlim::Array{Float64,1} # x limits of image
ylim::Array{Float64,1} # y limits of image
zlim::Array{Float64,1} # z limits of image
units::String # unitstring of image

end

Reading the image

The image itself can be read with

image = read_smac1_binary_image(filename)

This will return an Array{Float32,2} with the pixel values. You can pass this to any imshow function of your
favorite plotting package.

8.2. External Programs 21

GadJet.jl, Release 0.1.0

22 Chapter 8. SPH mapping

CHAPTER 9

Indices and tables

• genindex

• modindex

• search

23

	Installation
	Quickstart
	Reading Data
	Quick Visualisation

	Read Snapshot Data
	Reading the header
	Reading a snapshot
	Large Simulations

	Read Subfind Data
	Reading the header
	Reading the subfind files

	Write Data
	Format 2
	Format 1

	Unit Conversion
	Primitive unit type

	Riemann Solvers
	Setup
	Solving the shock
	Utility

	SPH mapping
	Internal Module
	External Programs

	Indices and tables

